

Background

- TYK2 mediates signaling from key proinflammatory cytokines, including IL-23, IL-12, and IL-17 downstream of IL-23, plus type I interferons (IFNs).
- TYK2 is expressed by cells of the immune system, as well as by CNS-resident astrocytes and microglia.
- Pathogenic TYK2 signaling is associated with immune-mediated diseases in both the periphery and CNS.
- Astrocyte and microglial activation is believed to contribute to the 'smoldering' inflammation' that is a hallmark of progressive forms of Multiple Sclerosis $(MS).^{1}$
- Clinical validation of TYK2 inhibitors in peripheral autoimmune conditions has been established, and loss-of-kinase-function TYK2 genetic variants are protective for an array of immune-mediated diseases, including MS.^{2,3}
- TYK2 inhibition may, therefore, represent a novel approach to treating CNS inflammation that is associated with neurodegeneration and consequent disability in MS.

Objectives

- This study aimed to further evaluate the in vitro activity and pharmacology of A-005 in CNS cells - ie, induced pluripotent stem cell (iPSC)-derived astrocytes and microglia - as well as in peripheral B cells.
- In addition, the efficacy of the compound was determined in experimental autoimmune encephalomyelitis (EAE), a widely studied mechanistic model of neuroinflammation.

Methods

- Evaluate A-005 for cellular activity in human iPSC-derived astrocytes and microglia, and in *in vitro* models of human B cell activation.
- Assess the impact of TYK2 inhibition on pro-inflammatory cytokine induction *in vivo*, and on clinical outcomes in a B-cell dependent model of EAE.

References

- ¹ Bittner et al. Nat Rev Neurol, 2023.
- ² Couturier et al. Brain, 2011.
- ³ Ban et al. Eur J Hum Genet, 2009.
- ⁴ Lyons et al. Eur J Immunol, 1999.
- ⁵ Graham et al. ACTRIMS Forum 2024, Poster No. P400 ⁶ Sharma et al. ACTRIMS Forum 2025, Poster No. P335

A-005, a Selective Oral Brain Penetrant TYK2 Inhibitor, Modulates Astrocytes and Microglia

Joyce Kwan, Matthew C. Foulke, Ryan Yu, Claire L. Langrish, Timothy D. Owens, and Kareem L. Graham

Alumis Inc., South San Francisco, CA, USA

A-005 limits TYK2 pathway activation in astrocytes, microglia, and B cells

		IC ₅₀ (nM)		
Stimulus	Readout	Astrocyte	Microglial cell	B cell
IFNα	pSTAT3	9.9	2.2	3.4
	pSTAT5	4.9	2.8	1.7
IFNα	IP-10	5.8	1.7	_
$CpG-B + IFN\alpha$	IP-10	-	_	25.4

Numbers represent the mean IC_{50} value for the indicated readout. Number of discrete donors used for these studies: Astrocytes = 3; Microglia = 2; B cells = 3-4. STAT, signal transducer and activator of transcription.

Human iPSC-derived astrocytes, microglia, or primary human B cells were treated with the indicated stimuli. Levels of phosphorylated STAT (pSTAT) proteins were measured by Alpha-LISA and levels of secreted Interferon Gamma-induced Protein 10 (IP-10) were measured by MSD (Meso Scale Discovery) Assay Kit.

TYK2 protein is expressed in iPSC-derived glial cells

Hoechst/S100B/TYK2

Microglia

Hoechst/Iba1/TYK2

Magnification, 20X; Scale bar, 25 μm.

A-005 suppresses TYK2 pathway activation (IFNα-induced STAT phosphorylation and IP-10 secretion) in iPSC astrocytes and microglia, with nanomolar potency

Human iPSC-derived astrocytes (left column) or microglia (right column) were stimulated in vitro with IFN α . Levels of pSTAT3 were measured by Alpha-LISA (top row) and levels of secreted IP-10 were measured by MSD Assay Kit (bottom row).

Data are presented as mean percent inhibition ± SD. Representative graphs are shown.

Human iPSC astrocytes (left) were stained with anti-S100B and anti-TYK2 antibodies, followed by incubation with speciesspecific AF488- and AF647-conjugated secondary antibodies.

Human iPSC microglia (right) were stained with anti-Iba1 and anti-TYK2 antibodies, followed by incubation with fluorophoreconjugated secondary antibodies. Astrocytes and microglia were stained with Hoechst as a nuclear marker.

Microglia

Log [A-005 (M)]

A-005 exhibits significant and dose-dependent suppression of clinical signs in a B cell-dependent model of EAE

Mice were immunized with full length MOG protein (MOG₁₋₁₂₅), an EAE model with pathology that is dependent on B cells.⁴ Once daily oral A-005 dosing was initiated 1 day prior to EAE induction.

A-005 achieves complete suppression of clinical EAE

Mann-Whitney U test vs Vehicle: p<0.05 for 3 mg/kg (Day 15-22)</p> p<0.05 for 10 mg/kg (Day 14-28)</p> p<0.05 for 30 mg/kg (Day 13-28)</p>

These data demonstrate that A-005 potently targets microglia and astrocytes, key drivers of chronic neuroinflammation, as well as TYK2 signaling and effector readouts within peripheral B cells.

Consistent with these observations, A-005 exhibits robust efficacy in a B cell-dependent model of EAE, which aligns with previously demonstrated efficacy for A-005 in T cell-dependent EAE models.⁵

- study in MS in 2025.
- neurodegenerative diseases.

Poster No. P352

Contact: kgraham@alumis.com Disclosures: Commercial support was provided by Alumis Inc. All authors are employed by Alumis. The authors have no other relationships or conflicts of interest to disclose.

	 Donor 1 Donor 2 Donor 3 	Purified human B cells were stimulated with CpG-B + IFNα in the absence or presence of a concentration range of A-005. IP-10 levels in supernatants were measured by MSD Assay Kit.
······	·····	Data are presented as percent inhibition, which was calculated based on the level of IP-10 measured after stimulation with CpG-B + IFNα plus Vehicle.
-6	-5	Symbols represent the mean \pm range of duplicate wells.

- 10 mg/kg A-005 (n=12)
- 30 mg/kg A-005 (n=12)
- ♦ 3 mg/kg Fingolimod (n=12)

A-005 suppresses IP-10 induction in vivo

After 7 days of dosing, IP-10 plasma levels were measured by MSD Assay Kit. *p<0.005 (***), p<0.001 (****) vs Vehicle.* ANOVA followed by Dunnett's multiple comparisons test.

Conclusions

> A-005 has successfully completed a Phase 1 (Ph1) study⁶, and we plan to initiate a Ph2 proof-of-concept

TYK2 inhibition also has the potential to ameliorate other human neuroinflammatory and