
Novel role of TYK2 mechanism in SLE pathogenesis via T-cell and B-cell pathways

Proteogenomic data of this study discovered new TYK2-mediated pathways in SLE pathogenesis in addition to its well-known IL-23/12 and type I IFN-regulation, hence identified new potential mechanisms that might underlie the protective effects of TYK2 loss-of-function variants in multiple autoimmune diseases.

- in SLE.
- **SLE pathogenesis**, which might contribute to the reported protective effects of TYK2 loss-of-function variants in SLE.

Joshua D. Hoffman, Nicole Narayan, Mera K. Tilley

Conclusions

Association of IL12RB1 and IFNAR1 protein levels with TYK2 variants in SLE validated the known TYK2-mediated regulation of IL-23/IL12, and type I IFN pathways

Proteogenomic signatures demonstrated that the TYK2 loss-of-function allele (P1104A) also associated with several mediators of T-cell and B-cell pathways in

	1334330443	
Protein Name	Posterior Probability of Inclusion	Immunological Function
IL12RB1	1	IL-23/12-mediated signaling
IFNAR1	1	Type I IFN-mediated signaling
CXCL10	0.997	T-cell chemotaxis
BST2	0.996	B-cell activation
CXCL11	0.986	T-cell chemotaxis
TNFSF13B	0.986	B-cell and T-cell proliferation
LAG3	0.934	T-cell activation
CCL3	0.861	T-cell chemotaxis
TNFRSF8	0.781	NF-κB-mediated signaling
CCL4	0.45	T-cell chemotaxis

References ¹Tian J et al. Ann Rheum Dis, 2023 ²Karmakar A et al. Clin Exp Med, 2024 ³Contreras-Cubas C et al. Sci Rep, 2019 ⁴Dendrou CA et al. Sci Transl Med, 2016 ⁵Langefeld CD et al. Nat Comm, 2017 ⁶Bycroft C et al. Nature, 2018 ⁷Wang G et al. J of the Royal Stat Society, 2020 ⁸Wallace C. Gen Epi, 2023

Poster No. 0902

rs34536443

- with SLE.

Disclosures

Commercial support was provided by Alumis Inc. All authors are employed by Alumis and have no other relationships or conflicts of interest to disclose.

Contact Details

Email: Jhoffman@alumis.com